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Abstract

The electromagnetic field of an oscillating magnetic dipole
is calculated, assuming that the dipole is immersed in a cold,
streaming plasma., The amplitude of the mégnetic dipole moment,
assumed knowvn, is taken to be sufficiently weak that the line-
arized cold plasma equations may be used to describe the response
of the plasna,

The resulting field of the dipole is rather different from
the field that would result if the plasma were not streaming.

In particular, a longitudinal electrostatic field appears as a
consequence of the plasma's motion, The far field of the dipole
is such that the Poynting vector is not purely radial, but is
tilted against the direction of the zeroth-order plasma flow,

An outwerd flow of mechanical energy is associated with
the electrostatic field. However, the mechanical energy flow is
negligible for streaming velocities small campared with the velocity
of light. The force necessary to hold the dipole in place is also
calculated. This force vanishes vhen the dipole axis is parallel

to the streaming direction, as does the longitudinal electric field.




1. Introduction

Electromagnetic fields produced by given time-varying

current and charge distributions in free space have been the

"subjects of many calculations, almost from the beginning of

electromagnetic theory. Many problems of current interest are
complicated by the fact that the fields may be interacting

with a plaswa or ionized gas. Several problems have been solved
in various approximations in recent years for given distrivutions
of charge and current in ‘the presence of a plasma [see, for
example, Cohen (1961, 62) ]. But meny gaps remain in our
gqualitative understanding of the fields to be expected in
particular types of plasma situations,

In particular, effects associated with plasma streaming

have been investigated relatively little., The calculations
which have been done have, to a considerable extent, been con-
cerned with plaswas which, to lowest order, are assumed to be
stationary. It is to be expected that some insight into the
effects of plasma streéming can be gained by seecking specific
solvable problems concerned with radiation into streaming
plasmas,

It is the purpose of this paper to study the effect of
a cold, streaming plasma on the electric and magpetic fields of

an oscillating magnetic point dipole. The plasma is unbounded



and it streams across the dipole in an arbitrary direction with
respect to the dipole's orientation. We assume that the fields
of the dipole are sufficiently weak that they impart only a
small perturbation to the streaming motion of the plasma. We
also assume that the physical dimensions of the dipole are so
small that it does not mechanically obstruct the plasma flow;
i.e., we idealize the dipole as a point.

lee and Papas (1965) have considered a similar problem
for the oscillating electric dipole. After obtaining an inte-
gral representation for the potential four-vector in the rest
frame of the dipole, they use the transformation properties 6f
the plasma's dielectric constant to calculate'thé appropriate
Green's function. For streaming velocities small compared with
the velocity of light, they conclude that the far zone electro-
magnetic field is not entirely transverse., As a result, they
show that the Poynting vector associated with the oscillating
electric dipoie is tilted against the direction of plasma flow.

We find qualitatively .similar results for the oscillating
magnetic dipole, although our results differ considerably in
detail, Moreover, we approach the problem from a different point-
of-view, Cur formalisn is based ona set of linearized, covariant,
cold plasma equations wherein we treat the magnetic dipole as a

small, external current "source" in the sense proposed



(for example) by Cohen (1961). That is, we represent the dipole
by a miniature current loop which weakly perturbs the streaming
plasma., We assume that we may prescribe the current in the
Jloop at will, The physical reason for the difference between
our results and those of ILee and Papaé is that their electric
dipole possesses, in effect, an oscillating source charge

density, whereas our magnetic dipole is a pure divergenceless

current source,




2, The Magnetic Dipole

2.1 Statement of the Problem

A cold, collisionless piasma streams across a circular
loop of oscillating current (figure 1). The orientation of
the flow vector ;0 relative to the plane of the loop is arbi-
trary. Ve treat the loop as an externally-fixed current source
which is unaffected by the plasma. Iater, we shall allow the
area of the current loop to become vanishingly small and its
current to become infinitely large in such a way that we recover
a point magnetic dipole. |

The current source generates distuibances in the plasma.

However, we assume that the source is sufficiently weak and

that the disturbances are sufficiently small that linearized
ccld plasma aquations are applicable. We seek analytical
expressions for the electric and magnetic fields of the oscil-

lating current loop in the presence of a streaming plasma,.
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2.2 Solution in Wave-Vector, Frequency Space when
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vant plasma literature is written in Gaussian units.
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Gaussian units are used throughout this paper since we treat
the plasma "microscopically’ end write Maxwell's equations in

Moreover, much of the rele-



In the equations'above, 33 and p, are the externally-introduced
"source" current and "source'" charge densities, respectively;
n; andlsi are the number density and velocity, respectively, of

the ith species of charge, and Yi is the relativistic factor

The equation of continuity and Maxwell's equations are covariant.
The equation of motion is not covariant, although it is correct
up to terms of O (vg /cu), and can be derived from the covariant

v,
equation of motion by neglecting fourth order terms in EE

We have neglected a pressure term in the»equation'of motion,
assuming that the plasma thermal velocities are small enough
to be negligible.

Ve may linearize equations (1) vy setting E =F (1),
B =B (l), n; = ng; + 10y (1) ana G; = ?0 + ;g(l), where ng; is
the equilibrium number density of the ith plasma component
(measured in the system with velocity ;;) and,V; is
the unperturbed streaming velocity common to allicomponents.

The superscript (1) signifies a first order perturbation, We

assume that there are no zeroth-order electric or magnetic



fields in the streaming plasma. We also assume that ZinOiei = 0,

i.e., that there is no zgroth-order charge density, and that

Zinoiei;o = 0, i.e. that there is no zeroth-order current density.
After Fourier analysis ofthe perturbation quantities in

space and time, the linearized Maxwell equations may be caombined

to yield the wave equation
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where the Fourier transfom of tle electric fidld, for ekample, is given by
-— -— - - l - <3 E-.—. - t
E(l)(k,w) = _(_E;dex [ at (1) (X,t)e i(kex - ot)
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Similarly, the Fourier transformed equation of continuily and

equation of motion may be solved for ni(l) and ;i(l) in terms



ofi (1) The result is
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We wish to solve equation (L) for E (1) (k, w); we outline
below a procedure for accomplishing the solution.

1) Resolve (4) intc components which are transverse (L)
_and parallel (ll) to the wave vector'i. One of these components
will contain onl;y:]"s_L . . The oﬁher wiil contain only 35“ , which

will turn out to be zero for the magnetic dipole.

—

2) Solve the transverse component for Vo El(l) as a

(1)
i

function of E|

3) Solve the parallel component for E“(l) in terms of

v . (),

(o]

- -
h) Solve simultaneously for v0 . B El) and E“(l) and then

solve the transverse component for E <l).
. L

The results for j = 0 are
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2.3 The Current Transform j__ . (k, w) for

the Magnetic Dipole

In order to evaluate (5) and (6) for the oscillating
magnetic dipole, we require an explicit expression for the Fourier
transform of the current loop.' Leﬁ the radius of the loop be a,
and let the axis of the loop lie along the z axis of an (r,9 , z)
coordinate system (figure 1). For a loop current Jocos wot, the
current density is

3‘5(;}’0) = J 'e\q) § (r - ao)a (z) cos wot,

o

where W, is the external (constant) driving frequency. The

Fourier transform of this expression is

ic

3 (k,u) = (Kxpd lole-w) + s(w+a)] ,

16ﬁ3 ©
(7)

-

whexe po is normal tec the plane of the current loop with meagnitude

2
: . J g
- lim _ T %% .
a 0
o -—)
2 o
J a = constant
oo

The current transformw (7) for the magnetic dipole is purely

=
transverse to the wave vector k.,
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2.4 The Electric Field When -0—91 «< 1

Equations (5) and (6) give the transverse and longitudinal
components of the electric field in (—11, w ) space, In principle
the inverse transforms of these equaticns specify the electric
field vector in (;’c,t ) space. In practice, hoWever, we find

that the k integration is difficult due to the factor

2

> z wp
(- k-v) - ==X
o] 3

in the denominators. Separating the denominators into partial
fractions circumvents this difficulty for small streaming

. let

v
velocities (6-9 <<l
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where M,N,P and Q are unknown coefficients, It can be shown

5
.
that if we disregard all terms of order (-0-9) and above, the

coefficients P and Q in (8) vanish and we have
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13.

But (6) and the "distortion" term in (5) are already at least of
v

o] . . .
order —— , Therefore, if we again disregard terms of order

Vo 2
(E~) , we find that
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which are correct up to terms of order

. Using (7) for

-
the current transform and removing the k operators from the

integrand (k= - iv), we may write (10) and (11) as
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The transverse electric field is undistorted for szall streaming

velocities; one would obtain the same expression for an oscillating

magnetic dipole in a stationary plasma.

longitudinel electric field is new.

On the other hand, the

It is directly proportional

. -
to the plasma's streaming velocity v and appears despite the
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fact that the source current is purely transverse}

We may now perform the K and w integrations, using complex
contour integration and the residﬁe theorem in evaluvating the
.integral over dk . However, since the poles of the integrand
lie on the real axis, the kK integral; as it stands,
is not well defined. We can remove the ambiguity in one of two
ways: (i) the requirement can be imposed tha®t only outgoing
waves be present in the result; or, (ii) a small collisional
damping texrm —vi§; (1) can be added to the right hand side
of (1f), where v; is the (assumed constant) collision freguency
for the ith species., We choose the latter procedure., Which
we use makes little difference, since we are rest%icting
ourselves to the case where () wpi>>-all'vi, so that the

collision frequencies do not appear in the eventual answvers,

-—
The results of the k and ¢ integrations, for

1/2

2
> [T
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The expressions above ére independent of any specific set
of spatial coordinates. We now choose the coordinate configuration
in figure 2. Iet the y axis of an (xyz) Cariesian system point
in the direction of the streaming velocity ;o; the xz plane is
normz2l to the direction of flow. We place the dipole at the
origin of the coordinate system and let the plasma stream past.

The polar angle em3 measured from the z axis, and the azimuthal



: .

angle P measured from the x axis, define the angular orienta-
tion of the dipole. The spherical coordinates (r, 6, ¢) specify
the position of an observer relative to the origin. In terms

of the parameters and coordinates defined above, the components

of the transverse electric field are

E_Lr = 0
. ) TR Gin o sin (o) a cos(ar~wot) ) sin (ar-wot)
g = "1 ¢ 0oy STy r 2
Ko . . )
L@ = —?r~) (sing cosem - cos§ 31nem cos(Q - qh)] .

a cos(ar - u6t) sin (ar - ubt)

r

n

r

(1)

The compcnents of the longiftudinal electiric field are
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2.5 The Magnetic Field.ﬁ(x,t) when L€9‘<< 1
We use the Maxwell egquation
—a(l) ”(l)
VxE =-3 9B
ot
L (1)
to find the magnetic field B in the plasma; there is no

ey
magnetic field associated with E‘l(l), which is derivable from

an electrostatic potential. The result is
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3. Interpretation of the Solution

3.1 Field Distortion: The Longitudinal Electric Field

Equations (16) through (18) specify the electric and
magnetic fields which an oscillating magnetic dipole induces
in a streaming plasma. The equations hold for arbitrary
orientations of Eg with respect to ;;, subject to. the restric-
tion that %? < <'l.

Some observations are in order. First [and this is per-

haps the most interesting result],it is apparent that an

oscillating magnetic dipole, in the presence of a streaming

plasma, excites a longitudinal electric field which vanishes
when V; = 0. The longitudinal normal modes are coupled by the
streaming with the transverse electromagnetic modes. Both
fields oscillate at the driving frequency of the current socurce.
v
Second, it is clear that for ?? < < 1 the transverse electric
and magnetic fields are essentially undistorted by the streaming
plasma. Mathematically, this results from the fact that ES(E,w)
for the magnetic dipole is purely transverse. for the electric
dipole, cn the other hand, 3*8(1%‘, w) has both a perpendicular and

a parallel.component. From the general expressions corresponding

20



to (5) and (6) [Bergeson, 1967], we find that the transverse
. v .
electric field will sustain an order ?? distortion when

js is non-zero. 1In fact, if we use a current transform appro-
il

priate to the oscillating electric dipéle, we can recover the

fields of Lee and Papas with the present formalism, provided

3 g 4 > g
we use Lee and Papas' expression for H as a function of B and

= . " 7 = = GO° i

E . Finally, we note that for “o‘\ v, [8, = @, =90° in (16)
through (18)], there is no longitudinal electric field associ-
ated with the oscillating magnetic dipole; an'ﬁu only exists

when Eg has a non-zero component perpendicular to the streaming

-3
velocity Vo

3.2 Power Flow: The Skewed Poynting Vector

At great distances from the dipole, only the order %

terms in the electric and magnetic field equations are significant.

We find that the existence -- or perhaps we should say the sur-
vival -- of a longitudinal electric field component at large r

skews the Poynting vector,

-

c = -
= IE(LXB),

21
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away from the radial orientation that it would have in a purely
transverse electromagnetic field. Using (16), (17), and (18)

for Eg L VA [Gm = 0° in (16) through (18)], we calculate

H !
S = o — o n 3| sin? 8 cos® (ar-uw t)
r L 3 o a o]
T eor
S = 0
)
K 2 v
S =---.___9._3h_EE (?5) (wona)2 (Z w 2) sin2 0 cos © cosz(ar—ubt),
@ b eor i Py )
(19
1
2. =
2w 2
i %
where na = 1 - . 5 .

The radial component of S is the same as it is in = stationary
plasma; the azimuthal éomponent of § is dependent on ?o and
points in the "upstream" direction (figure 3). -Lee and Papas
find a similar rassult for the electric dipole, i.e. that the

Poynting vector is tilted against the direction of zeroth-order
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plasma‘flow. [ However, they define their Poynting vector in terms
of E x H rather thanvﬁ x B. By using §, we include only field
energy flow in our Poynting flux, rather than include some parti-
cle kinetic.énergy as is.done in the "dispersive ﬁedium" point-

of view.]

3.3 Conservation of Enérgy: Mechanical Energy Transmlssion

It can be shown from (1) that a generalization of

Poynting's theorem -- applicable to a cold (streaming) plasma --
is
S+z (5 v. S\ 2 1 2 2
E 1<mw>vJ+at[u+;~(2nimivi>] B -3, (20)

2) is the elec-

o . . 1,2
where S is the Poynting vector, u = z= (E- + B
tromagnetic energy density and Es is the external source current
density. [Field (1956) gives a generalization of Poynting's
theorem for a hot (non-streaming) plasma.] We will neglect the

time derivative of the energy density in this equation; for

sinusoidal oscillations, its time average is zero.




Equation (20) suggests the possibility that mechanical
energy transmission may be associated with the longitudinal
electric field. In order to examine this idea, we enclose the
dipole within a sphere of radius r and form the volume integral
of (20) -- without the energy densityAterm. Using the divergence

theorem for the integral on the left, we find that

where ﬁda is an outwardly directed element of surface area and

the volume integral on the right is the external power input

of the source current. We linearize (21) by setting ?i = '\70+ Vi(l)

and n; =n_ + ni(l); we may calculate both ?i(l)(;c),t) and
i .

ni(l)(z,t) by using the results of section 2. For Eo L \70 s

(1) %) [ =%
;fi (x,8) = - (;ﬂ:‘) (—-g——) sin (ar-zp %)
5 2

p ’
. o A co A
sin 9 [(~—) ces wf r 4+ (n_| 3}
C ’ a

A ) (1) A
(Vi(l)} T (“i ) i (22)
r @

2L
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ni(l) (5,8) = - (n;%i) (;?)(E%) (ff‘;9 na) Sinicosm sin(ar—wotk
il c

| | (23)
where we.have retained only those terms of order (%) in distance.
When we linearize the mechanical power part of (21) and use (22)
and (23) for the first order perturbations, we find that only
three terms survive the surface integration and are non-vanishing
ashr becomes infinitely large. Two of these terms are of order
Z%r' and may be neglected. However, the third term,
c

L DI Vi ’v v () v (1)
2 1% o i i )
1 i ¢ o r
2
Yo
is of order 3 - As a result, the time-averaged mechanical
c

power flow away from the dipole is

03
jel
m
—
He1
Py
!
o}
e
I
e
<
n
S
<
’_I.
i }
1

time average

L w Qn v
1 (Z wpf) (03 ) ( = a) (”9) ' (2b)




Theréfore, in principle, there is an outward flow of mechanical
encrgy when the dipole oscillates in the presence of a streaming
plasma, although the energy transfer is negligible in the limit
of small streaming velocities. Since-the Poynting flux is accurate
only through terms of order (vd/c), (24) is of no use in veri-
fying the conservation laws,

We compare the outward flux of mechanical energy with the
outward flux of electromagnetic energy, as given by the first
term in  (21). The time-averagasd electromagnétic power output

is

& qas - 1 o o a2
r 3 i
: (25)
time averags

for small ?? , regardless of whether the plasma is streaming or
stationary. It can be shown that performing the volumz integra-
tion on the right hand side of (21), with the field of (16),
also gives (25) for the power input. The additional flux of
mechanical power, as given by (24), is of order (vog/c2)

and is thus negligible.

26



3.4 Conservation of Momentum: The Mechanical Force
on the Dipole

The streaming plasma exerts a mechanical force on the
dipole -- a force which tends to push the dipole "downstream",

in the direction of flow. Let.??be the Maxwell stress tensor:

T + B%)] .

N

FE O+ BB -

o 1
T = e {

We may calculate the force which acts on the dipole by enclos-

ing it again within a spherical boundary surface and evalua-
. . ' A ‘_. 3 .
ting the integral ég;n + T da, Using the complete field

components (16), (17), and (18), we find that for Qo LV

O

2 2 7]
u 2 w, fZow n v
Ap A o -~ © * pl _° AN
2,00 -~ n c —
6c

403 RPN -
time averaz

where the unit veclor 3 points in the direction of flow.

27
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The expression above is equal to the time average of

%1%

where P is the mechanical momentum of the particles [and the
dipole] plus the electromagnetic momentum of the fields within

the volume of the sphere. Specifically,

-3

- | .
mechanical - J; [pﬁ'+ % (3 X B)] d3x ’

dt

- l - -— 3
Pfield - Eﬂ'c IV (E X B) d"x .

=

But the time average of the time derivative of P is zero.

field
Moreover, (26) is independent of r, the radius of the sphere.
In the limit as r - O, the sphere encloses only the dipole Eo
at the origin; it no longer contains any particles of plasma.
Hence, we may interpret (26) as the effective mechanical force

which the streaming plasma exerts on the dipole. The force is

parallel to the direction of flow (figure L), and it vanishes
1

when elither ;; =0 or (Z W 2 2 is zero. An equal and
i i

opposite force must be supplied externally to keep the dipole

in place. For ;g parallel to ;5, the force on the dipole

vanishes. The mechanical work per second necessary to drag the

. e 1y . — . . .
dipole with velocity Vo through a quiescent plasma is given by




dotting (26) with ?r’o. This yields (24), the time-averaged
mechanical poﬁer flow away from a stationary dipole in a stream-
ing plasma.

There is also a "downstream" force on an oscillating
electric dipole immersed in a streaming plésma. However, in the
case of the electric dipole, the force does not vanish when the

dipole axis is parallel to the direction of the zeroth-order

plasma flow.

29
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Figure Captions

Circular loop of source current immersed in a

streaming plasma. The zeroth-order plasma flow
. g . . A A A
vector is v_. The unit vectors e , & and e
o] A x 7y z
form a Cartesian triad with @z normal to the
plane of the loop; r and o are the corresponding
polar coordinates. The radius of the loop is a -
Coordinate configuration for the electric and

magnetic fields. The Cartesian cocrdinate sys-

tem (xyz) is fixad in space with its y axis

) - id -
directed along v the xz plane is normal to

the direction of plasma flow.

ite]

The polar angle 2 and the azimuthal angle 7o
specify the angular orientation of y , while
the spherical coordinates r, §, and ¢ d=fine

the posi

the Poynting vector, S, in the xy plane atl vari-

ous points around a contour of coastant E, . The



Figure

4.

angle 7, which specifies the degree of skew, or tilt,

- .
of S away from the ralisl direction, is defined

by the expression

BIREES
tan T = —Eg— 5 1 . lcos @l .
ub a

Contours of constant E2 and E“2 (radiation fields).

The dipole is perpendicular to the zeroth-order
plasma flow, as in figure 3. The ellipse schemati-
cally represents a conitour of constant E2, vhere
]ﬁl is the magritude of the total electric field.
The lemniscate schematically traces a contour of
constant Eue. The contours lie in the "equatorial"
(xy) plane of the dipole. The time-avarage force

which the plasma exerts on the dipols is

!

lo

(g}

re
orce 6
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